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In this paper, the effects of free-stream turbulence on stagnation-point flow and
heat transfer are investigated through large eddy simulation (LES) of homogeneous
isotropic turbulence impinging upon an isothermal elliptical leading edge. Turbulent
mean flow and Reynolds stress profiles along the stagnation streamline, where the
mean flow is strain dominant, and at different downstream locations, where the
mean flow gradually becomes shear-dominated, are used to characterize evolution
of the free-stream turbulence. The Reynolds stress budgets are also obtained, and
the turbulence anisotropy is analysed through the balance between the mean flow
strain and the velocity pressure gradient correlation. In the presence of free-stream
turbulence, intense quasi-streamwise vortices develop near the leading edge with
a typical diameter of the order of the local boundary-layer thickness. These strong
vortices cause the thermal fluxes to peak at a location much closer to the wall than that
of the Reynolds stresses, resulting a greater sensitivity to free-stream turbulence for the
heat transfer than the momentum transfer. The heat transfer enhancement obtained by
the present LES agrees quantitatively with available experimental measurements. The
present LES results are also used to examine the eddy viscosity and pressure-strain
correlations in Reynolds stress turbulence models.

1. Introduction
Stagnation-point flow, where fluid approaching a solid surface divides into diverging

streams, occurs ubiquitously in nature as well as in many engineering problems. An
improved understanding of the stagnating flow turbulence and heat transfer is critical
to a wide range of engineering applications, from protecting a gas turbine blade
from being melted by the extremely hot and turbulent combustion gas, to enhancing
the efficiency of a modern micro-electronics cooling system using micro-jet array
impingement.

In his pioneering work, Hiemenz (1911) established that stagnation-point flow is
one of the very few types that admit exact solutions of Navier–Stokes equations.
Subsequent studies have been focused on understanding perturbed stagnation-point
flows, i.e. the evolution and effects of various disturbances, including turbulence,
that are present in the free stream. One of the prominent effects, first observed in
the 1920s (Piercy & Richardson 1928, 1930), is that free-stream turbulence induces
large heat transfer enhancement at the stagnation point (Giedt 1949; Hegge-Zijnen
1957; Kestin, Maeder & Sogin 1961). Various semi-empirical correlations have been
proposed to quantify this effect, mostly based on the mean flow Reynolds number
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and the free-stream turbulence intensity (Smith & Kuethe 1966; Kestin & Wood
1971; Lowery & Vachon 1975; Mehendale, Han & Ou 1991), but they have met with
limited success. Later, it was recognized that turbulence length scale played a critical
role in determining the overall effects of free-stream turbulence. By incorporating
turbulence length scale into the correlations, the applicability of prediction correlation
is significantly improved (Ames & Moffat 1990; Dullenkopf & Mayle 1995; Van
Fossen, Simoneau & Ching 1995). Although different definitions of length scale
are used in these correlations, the heat transfer enhancement is found generally to
increase with increasing Reynolds number and turbulence intensity, but decrease with
increasing turbulence length scale.

Theoretical studies of the free-stream turbulence effects in stagnation-point flows
have ranged from the mean flow unsteadiness, the linear/nonlinear instability, to the
vortex stretching/amplification effects. Lighthill (1954) studied a pulsating mean flow
around a cylindrical body and obtained the Stokes-layer correction, but no significant
change in heat transfer was found. Similarly modulated stagnation point flows were
also studied by Ishigaki (1970), Pedley (1972) and Merchant & Davis (1989), but with
an emphasis on the skin friction. The linear stability analysis was initiated by Görtler
(1955) and Hämmerlin (1955), further extended by Kestin & Wood (1970), and finally
clarified by Wilson & Gladwell (1978). It has been shown that plane stagnation-point
flow is always linearly stable to three-dimensional disturbances. For finite-amplitude
disturbances, Lyell & Huerre (1985) showed that the flow can be destabilized if the
level of the external two- or three-dimensional disturbances exceeds a threshold value.
The linear instability for the more general attachment-line boundary-layer flow has
also been investigated by Lin & Malik (1996) and Theofilis et al. (2003). Morkovin
(1979) argued that the enhancement of heat transfer is more likely to be the result
of a forced response to upstream disturbances than to any internal flow instability, a
view advocated earlier by Sutera (1965) who analysed the amplification of incoming
organized disturbances by mean strain, indicating the sensitivity of the heat transfer
to vortical disturbances. For turbulence impinging on a circular cylinder with either
very large or very small scales, Hunt (1973) obtained the behaviour of second-order
turbulence statistics by using a generalized rapid distortion theory (RDT). Xiong
& Lele (2004) showed that the critical parameter in determining the evolution of
upstream three-dimensional disturbance is the ratio between the disturbance length
scale and the Hiemenz boundary-layer thickness. Using numerical simulation of
a swept Hiemenz boundary layer, Spalart (1989) found that, out of initial white-
noise disturbances, the most unstable disturbance-mode is the one with the same
similarity form as the mean Hiemenz flow, an assumption made in the stability
analysis mentioned above. The flow structures induced by free-stream turbulence in a
stagnation region were found to be qualitatively similar to those induced by upstream
organized disturbances (Xiong & Lele 2001). Bae, Lele & Sung (2000) showed that
different length scales generate quite different flow patterns and in turn different
heat transfer responses in a plane stagnation-point flow. Although much progress
has been made over the years, a complete understanding of the effects of free-stream
disturbances, particularly turbulence, in stagnation-point flows has not been achieved.

The free-stream turbulence effects have also proved difficult to incorporate into
engineering turbulence models. The one-equation model (e.g. Spalart & Allmaras
1992), while widely used and shown to be particularly successful in aerodynamic flows
(Bardina, Huang & Coakley 1997; Wilcox 2001), does not explicitly account for the
effects of free-stream turbulence. Standard two-equation models, e.g. the k−ε or k−ω

model, when used in stagnation-point turbulent flows, badly overpredict the turbulent
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kinetic energy and heat transfer – this is termed the ‘stagnation-point anomaly’
(Champion & Libby 1991, 1994; Durbin 1996). A fundamental difficulty with the
two-equation models is that turbulence is assumed to be predominantely isotropic and
in quasi-equilibrium. However, stagnating-flow turbulence can be strongly anisotropic
because different components of the fluctuation velocity respond differently to the
mean flow straining. Reynolds stress models provide the generality to account for the
anisotropy of the turbulence explicitly. Im, Huh & Kim (2002) used three variants
of the Reynolds stress model; the GL model (Gibson & Launder 1978); the GL-
CL model (Craft, Graham & Launder 1993); and the SSG model (Speziale, Sarkar
& Gatski 1991), to compute both the impinging and countercurrent stagnation
flows. Although the predictions from these models were better than k − ε type
models, all the models still severely overpredict the turbulence kinetic energy, and
have large discrepancies in other Reynolds stress components when compared to
experimental measurements. The problem stems from the overprediction of the
energy production and the underprediction of the redistribution by the pressure–strain
correlations. This uncertainty may be attributed to the difficulty in, and hence the
lack of, detailed experimental measurements in the immediate vicinity of the leading
edge.

In this study, we carry out LES of the impingement of free-stream turbulence upon
an isothermal elliptical leading edge. To allow direct comparison with experimental
results, the flow configuration and simulation parameters are taken to match the
experiments by Van Fossen et al. (1995). The first goal of the present study is to gain
an improved understanding of the evolution of stagnating-flow turbulence and the
mechanism of the heat transfer enhancement. Secondly, the simulation is aimed to
help to reduce some of the uncertainty in turbulence modelling for strain-dominated
flows. The relative magnitudes and distributions of various turbulence quantities are
obtained from the LES data. The present simulation shows that the largest change in
the turbulence structure occurs in the immediate region of the leading edge. Thirdly, it
is hoped that the present LES data may help the general development and calibration
of turbulence models when turbulence anisotropy becomes strong.

The rest of the paper is organized as follows. The basic governing equations for
the LES are given in § 2. The numerical methods and validation procedures are
described in § 3, along with a blending scheme for generating free-stream turbulence.
The main simulation results, including the mean flow profiles, turbulence intensity
and Reynolds stress budget, are presented in § 4. In § 5, we summarize the results and
give concluding remarks.

2. Navier–Stokes equation and SGS modelling
The flow configuration for the present LES is shown in figure 1 with both the

laboratory coordinates (x, y, z) and the local surface coordinate (s, n, z) labelled. The
mean flow is two-dimensional and the turbulence is assumed to be homogeneous in
the spanwise direction z.

The governing equations for the LES of compressible turbulence are the
filtered Navier–Stokes equations. With the dynamic subgrid stress (SGS) model for
compressible flows (Moin et al. 1991), they are written as

ρ,t + (ρũi),i = 0, (2.1)

ρũi,t + ρũj ũi,j = −p,i +
1

Re
[(λ̃ũj,j ),i + (2µ̃T S̃ij ),j ], (2.2)
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Figure 1. Flow configuration and inflow, outflow and wall boundary.

ρT̃,t + ρũi T̃,i + (γ − 1)ρT̃ ũj,j =
γ

PrRe
[κ̃T T̃,i],i

+
γ (γ − 1)M2

Re
[λ̃S̃ii S̃jj + 2µ̃S̃ij S̃ij ], (2.3)

where

p =
ρT̃

γM2
+ 2

3
CIρ�2|S̃|2, (2.4)

µ̃T = µ̃ + Cρ�2|S̃|Re, (2.5)

κ̃T = κ̃ + Cρ�2|S̃|PrRe

γPr t

. (2.6)

Here the tilde stands for Farve average; ρ is the density; ui is the velocity vector,
and T is the temperature. µT is the subgrid eddy viscosity. κT is the subgrid eddy
thermal conductivity, and Pr t is the turbulent Prandtl number. Sij = (ui,j + uj,i)/2
is the rate-of-strain tensor. M , Re are the mean flow Mach number and Reynolds
number, and in the present study they are based on the upstream mean velocity U∞,
the speed of sound a∞ and the leading-edge diameter D. Pr = 0.7 is the molecular
Prandtl number and γ = 1.4 is the ratio of specific heats. The eddy coefficient CI for
the subgrid normal stress is set to zero and the turbulence Prandtl number Pr t is set
to unity. The eddy coefficient C for the subgrid shear stress is computed using the
standard dynamic SGS model (see Xiong 2004 for details).

3. Numerical method
The numerical method and validation problems for the present LES are described

briefly in this section. For more details, see Xiong (2004).

3.1. Implicit scheme with linearized subiterations

We first recast the compressible flow governing equations in a general form:

U,t + F (U ) = 0, (3.1)

where U = {ρ, u, v, w, T }T is the vector of flow variables and F (U ) represents the
nonlinear and viscous terms. Since for wall-bounded flows, explicit time integration
schemes are prohibitively expensive because of the CFL stability constraint, in this
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study we use an implicit dual-time-stepping scheme with linearized subiteration, which
may be expressed as [

I +
3�τ

2�t
I + �τA(Un)

]
�Uk = −�τRk, (3.2)

with

A ≡ ∂F

∂U
, Rk =

3Uk − 4Un + Un−1

2�t
+ F (Uk), �Uk = Uk+1 − Uk. (3.3)

Here �t is the physical time step, and �τ is the pseudo time step for subiteration.
At each physical time step, Un is taken to be the initial value for Uk to start the
subiteration at k =0. If the subiteration converges, i.e. �Uk → 0, we obtain Uk+1 =Uk .
The final value of Uk+1 is taken to be Un+1, and Rn+1 = 0 recovers the second-order
fully implicit scheme, which is unconditionally stable. Notice that instead of a function
of Uk as in standard subiteration schemes, the left-hand side operator in (3.2) is only
a function of Un; therefore (3.2) is linear for variable �Uk . An LU decomposition of
the coefficient matrices is performed at the first step of each subitereation, and the
factored matrices are stored and used until the subiteration converges. This obviates
the need for inverting the coefficient matrices at every subiteration step, and therefore
significantly improves the subiteration efficiency.

3.2. Spatial discretization

At interior nodes, the five-point central difference scheme is used for first and second
derivatives. Near the computational boundaries, five-point biased stencils are used.
The resulting difference schemes are fourth- and third-order accurate for the first
and second derivatives, respectively. Owing to the intrinsic non-dissipative nature,
central difference schemes are often subject to the so-called two-δ wave instability
caused by the decoupling of the even and odd grid points. In the LES context, we
should not expect that a physics-based SGS model will automatically suppress such
an instability. As well as the SGS model itself often being implemented with the same
central difference scheme, the length scale of the two-δ waves is much shorter than that
of the SGS model. The purpose of the SGS model is to extract energy at a correct rate
at a cutoff scale – the scale at which the discrete representation becomes inadequate –
and, for a grid spacing h, this is typically around a wavenumber of hk ∼ π/2. However,
for the two-δ wave, it occurs at the Nyquist wavenumber hk ∼ π. Hence to suppress
the two-δ waves, appropriate numerical damping procedures must be applied. In the
present simulations, we choose the following fourth-order dissipation

Dn = −εd

(
�4

ξ

∂4U

∂ξ 4
+ �4

η

∂4U

∂η4
+ �4

z

∂4U

∂z4

)
, (3.4)

where εd is the amplitude of the dissipation, and �ξ , �η and �z are the grid spacing
in the streamwise, normal and spanwise directions in computational space. Care must
be taken to ensure that the added numerical dissipation is minimal and does not
deteriorate the resolved solution. For this purpose, εd is chosen to be such that the
magnitude of Dn is significantly smaller than the truncation error of the difference
schemes. Based on modified wavenumber analysis, this may be achieved by requiring
εd � 0.01Ng , where Ng =(Nξ + Nη + Nz)/3 is the average number of grid points in
one spatial direction. The resulting Dn is one order of magnitude lower than the
truncation error and its effects on the results of the present LES are expected to be
negligible. A more detailed discussion of the method and the demonstration of its
effectiveness can be found in Xiong (2004).
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3.3. Boundary conditions

Boundary conditions are introduced to replace the governing equations at the inflow,
outflow and the wall boundaries of the computational domain. Consider an arbitrary
boundary constraint at time level n + 1 on the flow variable U = {ρ, u, v, w, T }T

B(Un+1) = 0. (3.5)

The general implicit treatment of the boundary conditions, in terms of the variable
δU =Un+1 − Un, can be written as(

∂B
∂U

)n

δU = −B(Un). (3.6)

The boundary condition at the inflow provides the upstream mean flow information
and also introduces free-stream disturbances or turbulence into the computational
domain. For a subsonic inflow, characteristic analysis shows that four incoming
quantities must be specified along with one outgoing quantity computed from the
interior domain. The specific choice of these quantities depends on the formulation
of the problem. In this study, we constrain the entropy, spanwise and tangential
velocities, and the incoming Riemann invariant. The outgoing Riemann invariant is
computed by first-order extrapolation from the interior points close to the boundary.

At the outflow, the parabolized Navier–Stokes equations is used following Collis
(1997), i.e. the streamwise second-order derivatives in the equations are neglected.
In addition, the pressure gradient at the outflow is obtained from the corresponding
potential flow solution. This treatment has been shown to yield adequate and stable
outflow boundary conditions both for the laminar and turbulent flow computations.
No slip and isothermal conditions are applied at the wall for the velocities and
temperature, and the periodicity condition is imposed in the spanwise direction.

Prior to turbulence simulations, the code is first validated on problems of laminar
compressible boundary layer at a leading edge. The velocity and temperature profiles
are compared with analytic self-similar solutions. A leading-edge acoustic receptivity
problem is also computed and compared with previous numerical studies. These
validation results are summarized in Appendix A.

3.4. Generation of free-stream turbulence

In this section, we describe a blending procedure combining independent, but
statistically equivalent realizations of homogeneous isotropic turbulence into a unified
turbulent flow field which serves as a realistic representation of free-stream turbulence.
Consider two such turbulence fields, U (1) and U (2), that must be concatenated in the
x-direction. We introduce a blending zone, extending from the interface into each of
the fields by a short distance, and a linear combination

u = u(1) cos θ + u(2) sin θ, (3.7)

where θ varies smoothly from 0 to π/2 across the blending zone. The new field varies
smoothly from one field to another and retains the mean values and second-order
statistics of the original fields. The dependence of θ on x within the blending zone
introduces an extra dilatation field, but it can be removed by using the Helmholtz
decomposition theorem for the velocity vector. In figure 2, we plot the energy spectra
of two original and the blended turbulence fields. It can be seen that the energy
spectrum of the blended field remains essentially the same as the originals. A very
small amount of energy is present at the lowest wavenumber owing to the increased
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Figure 2. Energy spectra for the original and blended data sets. — · —, data 1; - - -, data 2;
—–, blended.

length in the x-direction. More comparisons of energy spectra, as well as other
quantities of interest, can be found in Xiong et al. (2004).

In the present LES, twelve realizations of such independent, but statistically identical
homogeneous isotropic turbulence fields are pre-computed using LES with the same
dynamic SGS model. To keep the same spanwise domain size as in the main LES,
these simulations are carried out in a rectangular box of size 1.6D, 1.6D and 0.4D

in the x-, y- and z-directions, respectively. A 128 × 128 × 32 grid is chosen to ensure
the isotropy of the resulting turbulence. The code is adapted from a DNS code (Lui
2003) which uses a sixth-order compact finite- differencing scheme and a fourth-order
Runge–Kutta time integration. Once the twelve turbulence fields are obtained, they are
lined up spatially and joined together at the interfaces by applying the above blending
procedure. The resulting turbulence field, twelve times longer than each individual
realization, but with the same characteristics, serves as the free-stream turbulence,
which will be convected into the computational domain through the inflow boundary.

4. LES results
4.1. Simulation conditions

The flow condition for the present LES is taken from the wind tunnel experiments by
Van Fossen et al. (1995), and specifically, corresponding to the data set 244. In the
experiments, free-stream turbulence is generated by placing a turbulence-generating
grid upstream of a leading-edge model. The shape of the leading edge is a half-ellipse
and the aspect ratio (length ratio between the major and minor axis) is 3 for this
data set. Different values of turbulence intensity and length scale are obtained by
varying the mesh size of the grid and its location relative to the leading edge. The
model is kept at a constant temperature, and the heat transfer rate is measured in
the stagnation-point region. The mean flow and free-stream turbulence parameters
are summarized in table 1. The mean flow Reynolds number ReD = U∞D/ν is based
on far upstream incoming velocity U∞ and the leading-edge diameter of curvature
D. M∞ = U∞/a∞ is the mean flow Mach number based on the sound speed a∞ far
upstream. T u and L are the free-stream turbulence intensity and integral length
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ReD M∞ T u L/D ReL ReT Tw/T0 Domain (x, y, z) Nx × Ny × Nz

42 000 0.15 0.05 0.1 210 93 1.075 (3.5D, 5D, 0.4D) 191 × 144 × 48

Table 1. Parameters of the mean flow and free-stream turbulence for the present LES.

scale; they are determined at the location of the leading edge, but in the absence
of the model. The numerical procedure for determining L from the auto-correlation
measurements is given in Van Fossen et al. (1995) and applied in the present LES.
ReL = T uL/ν is the Reynolds number based on integral length scale and turbulence
intensity and the ReT is the Taylor microscale Reynolds number. Tw and T0 are the
surface temperature on the wall and the total or stagnation gas temperature in the
free stream.

The computational grid is generated by an algebraic multi-surface method (Eiseman
1985) in the (x, y)-plane which guarantees the grid orthogonality at the wall and the
inflow/outflow boundaries. The grid points are clustered towards the wall and the
stagnation point, but uniformly spaced in the spanwise direction. In the present LES
study, a dual-grid approach is used. First, a large outer grid is generated, covering
half of the ellipse downstream and extending vertically from the bottom to the top
wind tunnel wall. A potential flow that matches the experimental base flow conditions
is computed on this grid. For the subsequent LES calculations, a smaller inner grid
covering only the leading-edge region is extracted from the outer grid. On this
inner grid, the inflow/outflow boundary conditions for the mean flow can therefore
be provided by the potential flow solution. This dual-grid approach enables us to
improve the grid resolution near the leading edge at a reduced computational cost.
For the LES grid, the minimum streamwise grid spacing is �xmin/D = 0.0037 at the
stagnation point, and the minimum normal spacing is �ymin/D = 0.00058 at the wall.
The Hiemenz scale for the laminar boundary layer,

√
ν/A/D = 0.0036, is resolved

by 7 grid points in the normal direction, here A is the outer flow strain rate. The
time step for the present LES is �t = 0.0015, and the total integration time N�t for
obtaining the turbulence statistics is 25.

4.2. Mean flow results

The contour plots for the mean flow streamwise velocity U , transverse velocity V

and temperature T are shown in figure 3. Outside the boundary layer, the difference
between the mean and the laminar velocity contours are minimal, and along the
stagnation streamline, the velocity profiles are almost indistinguishable (not shown
here, see Xiong 2004). It confirms the experimental measurements that the stagnation-
line velocity is essentially independent of the free-stream turbulence. This is, however,
not the case for the temperature profile. As shown in figure 4(a), a steeper gradient is
developed at the wall for the mean temperature profile (about 25 % higher than the
laminar value), indicating the heat transfer enhancement in the presence of free-stream
turbulence.

The comparisons between the mean and laminar profiles of the tangential velocity
Us and the normalized temperature (T −1)/(Tw −1) are further shown in figure 4(b–d),
using the local s − n coordinates at three downstream locations s/D =0.2, 0.8 and
1.6 (marked in figure 3c). The change of the slope at the wall is again about 25 % for
the temperature and only about 5 % for the velocity, signalling a greater sensitivity to
the free-stream turbulence for the heat transfer than for the skin friction. Moreover,
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Figure 3. Turbulent mean velocity and temperature contours. Re =42 000, Ma = 0.15,
Tu = 0.05, L/D =0.1. (a) streamwise velocity U , contour minimum: 0, maximum: 1.3,
increment: 0.05. (b) transverse velocity V , minimum: −0.6, maximum: 0.6, increment: 0.05.
(c) temperature T , minimum 0.995, maximum 1.075, increment: 0.005. The streamwise locations
of the four cross-sections are also marked.

the profiles of the mean streamwise velocity also show that, despite the impinging
turbulence, the boundary layer remains pre-transitional. A longer streamwise distance
than the present simulation domain is required before a fully turbulent boundary
layer can develop.
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Figure 4. Comparison between turbulent mean and laminar velocity and temperature profiles
at different streamwise locations, —–, turbulent mean; −−−, laminar. (a) s/D =0, (b) 0.2,
(c) 0.8, (d) 1.6.

4.3. Vortex dynamics

Figure 5 shows a visualization of instantaneous spanwise velocity within the (x, y)-
plane at z =0, and the temperature gradient on the model surface near the stagnation
point s = 0. It can be seen that the isotropic free-stream turbulent eddies have
been strongly stretched in the streamwise direction near the stagnation point. The
ensuing impingement of these vortices on the leading edge modifies the underlying
thermal boundary layer dramatically. On the model surface, the resulting heat
transfer distribution develops into thin, streamwise elongated streaky structures. The
corresponding instantaneous temperature fields are shown in figure 6 through a series
of wall normal sections at different streamwise locations. The temperature contours
show distinctive mushroom-like structures. By tracing these structures in consecutive
sections, we can sees the elongated streaky vortices being wrapped around the leading
edge by the mean flow.

To understand better the typical vortex structures and their effects on heat transfer,
the temperature contour and the corresponding velocity field in the stagnation plane
s = 0 are shown in figure 7. The velocity fields show clearly that strong, amplified
y-oriented vortices produce reverse flow (u < 0) in the stagnation region, which lifts
up the hot fluid close to the wall and swaps it with the lower temperature fluid
away from the wall. In doing so, the velocity disturbance creates the mushroom-
like structures in the temperature contours. Directly underneath these mushroom-like
structures, however, the thermal boundary layer is thicker than the undisturbed case,
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Figure 5. Instantaneous spanwise velocity in (x, y)-plane and temperature gradient on the
body surface.

Figure 6. Instantaneous temperature contors at different locations on the body surface,
s/D = −0.8 to 0.8.

and the heat transfer rate decreases. It is in the region between these mushroom-like
structures, where the disturbed flow has a normal velocity directed towards the wall,
that the boundary layer become thinner, and consequently the heat transfer increases.
The overall spanwise averaged heat transfer rate is thus determined by the distribution
and intensity of these thickened and thinned regions.

As shown in figure 7, the mushroom-like structures typically do not remain at a
fixed spanwise location; instead they move laterally over a significant distance during
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Figure 7. Temperature contour and the corresponding velocity field in the stagnation plane
at different times. The mean flow direction is downward and the time interval is �t =0.6.

their lifetime. This indicates the lateral movement of the strong streamwise vortices
by which these mushroom structures are formed. When a vortex approaches a wall,
vorticity is generated at the wall through the no-slip boundary condition; therefore,
the lateral movement of the vortices may be characterized through the movement of
the wall vorticity. By following the slowest descent line on the space–time correlation,
the average lateral speed for the wall vorticity along the stagnation line (z-axis) is
found to be ±0.06, which is about half of the maximum wrms at the leading edge. The
mechanism of the lateral movement can be understood through the so-called wall-
blocking effect. Considering a single vortex approaching a wall, an inviscid image
vortex with opposite sign is induced at an equal distance on the other side of the wall
to enforce the no-penetration wall boundary condition. The mutual induction of these
two vortices generates a tangential velocity whose magnitude is proportional to the
strength of the vortices. This causes the lateral movement of the approaching vortex
in the spanwise direction, and in turn the movement of the mushroom structures in
the temperature contours.
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The stretching of the free-stream turbulence eddies may be further characterized
quantitatively using spanwise two-point correlations of velocity. Figure 8 shows the
streamwise velocity correlation at different locations along the stagnation streamline.
At the inflow boundary, the correlation length is long, representing the length scale
of the free-stream turbulence in the absence of the strain effect. Once the turbulence
enters the domain, the spanwise length scale decreases monotonically and, close
to the leading edge, it reaches a scale of local boundary-layer thickness. A model
problem on the competition between the amplification due to vortex stretching and
damping due to viscosity in a disturbed Hiemenz boundary layer was studied by
Xiong & Lele (2004), and the leading-edge region of the present flow represents
the same process in the context of a complete flow field. We should also remark
that because of this monotonic decrease of the turbulence spanwise length scale,
the choice of the spanwise simulation domain size is a balance between encomp
assing the large-scale free-stream turbulence at the inflow and sufficiently resolving
the intense small-scale streamwise vortices at the leading edge. In the present LES,
we place our focus at the leading-edge region and have chosen the spanwise domain
size to be four times the integral length of the free-stream turbulence. A similar LES
with spanwise domain size about seven times the turbulence length scale was also
performed by Xiong (2004). The comparison between the two cases suggests that the
LES results are not sensitive to the spanwise domain size as long as the small-scale
vortices at the leading edge are adequately resolved.

The spanwise averaged non-dimensional heat transfer coefficient, denoted by
Frössling number Fr = Nu/

√
ReD , where Nu being the Nusselt number, is plotted

in figure 9 as a function of the streamwise distance from the stagnation point.
The experimental measurements from Van Fossen et al. (1995) are also plotted for
comparison. Both the LES and experimental results show that the shape of the
Fr distribution is largely the same as in the laminar case, but their values are
significantly higher in the presence of free-stream turbulence. Although the present
LES result is slightly lower than the experimental measurements, as not all of the
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Figure 9. Averaged Frössling number distribution on the body surface. —–, turbulent mean;
−−−, laminar; �, experimental data (Van Fossen et al. 1995).

turbulence scales are resolved in LES, the overall agreement is good. As shown by
Xiong & Lele (2004), there is an optimal length scale for the stagnation-point heat
transfer enhancement; scales larger or smaller than the optimum produce a smaller
heat transfer enhancement. In order to predict the free-stream turbulence effects
accurately, it is thus important to resolve the turbulence structures up to the optimal
length scale. For this reason, the effect of SGS modelling must be evaluated. A typical
distribution of the instantaneous SGS eddy viscosity νT is shown in figure 10(a), and
the corresponding time- averaged distribution is shown in figure 10(b). Both figures
show that the maximum νT occurs in the leading-edge region, where small-scale
turbulence is produced by strong vortex stretching and amplification. However, the
value of νT is relatively small, about half of the molecular viscosity, indicating that
the grid resolution close to the wall is adequate for capturing the near wall eddies. In
this sense, the present LES is essentially a quasi-DNS of the near wall flow. However,
because of the grid stretching in the wall normal direction, outside the boundary
layer the turbulence scales are not completely captured, and we have found the SGS
eddy viscosity is necessary to prevent the solution from diverging because of the
intermittent passage of strongly stretched vortices outside the boundary layer.

4.4. Reynolds stress and turbulence budgets

Because of the spanwise homogeneity, the significant Reynolds stresses in the present
flow are u′2, v′2, w′2 and u′v′, and the significant heat fluxes are u′T ′ and v′T ′. Along
the stagnation streamline, the symmetry in the y-direction also leads to u′v′ = v′T ′ =0.

It is instructive to write the governing equations for Reynolds stress and heat
transport. Using the notion of the Reynolds average and letting f denote the time-
laveraged value of f , we may decompose the turbulence field into a mean and a
fluctuation part, i.e.

ρ = ρ + ρ ′, ui = Ui + u′
i , p = P + p′, T = T + T ′, (4.1)
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Figure 10. Contours of SGS eddy viscosity νT /ν. (a) Instantaneous (averaged in z), contour
minimum: 0.05, maximum: 0.75, increment: 0.014. (b) Turbulent mean, minimum: 0.05,
maximum: 0.52, increment: 0.040.

and similarly for the transport coefficients

λ = λ + λ′, µT = µ + µ′, κT = κ + κ ′. (4.2)

The steady transport equation for the Reynolds stress uiuj can be written as

ρ Uk(u
′
iu

′
j ),k = − u′

jp
′
,i − u′

ip
′
,j − Ui,k[ ρ(u′

ku
′
j ) + Ukρ ′u′

j + ρ ′u′
ku

′
j ]

− Uj,k[ ρ(u′
ku

′
i) + Ukρ ′u′

i + ρ ′u′
ku

′
i] − ρ u′

k(u
′
iu

′
j ),k − ρ ′u′

k(u
′
iu

′
j ),k + ΦT .

(4.3)

On the right-hand side of (4.3), the first two terms are the velocity pressure gradient
correlation; the third and fourth terms are the production terms; the fifth and
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sixth terms are the transport of Reynolds stress due to turbulent fluctuation. For
incompressible flow, it can be reduced to a divergence form and is termed as turbulence
transport. Here, for compressible flow, we use the term turbulence convection to refer
to the sum of these two terms. The ΦT in the last row is the total dissipation

ΦT =
1

Re
[ (λD′

,iu
′
j + D,i λ′u′

j + λ′D′
,iu

′
j ) + (λD′

,j u
′
i + D,j λ′u′

i + λ′D′
,j u

′
i) ]

+
2

Re
[ (µS ′

ik,ku
′
j + Sik,k µ′u′

j + µ′S ′
ik,ku

′
j ) + (µS ′

jk,ku
′
i + Sjk,k µ′u′

i + µ′S ′
jk,ku

′
i) ]

= ε + Φv, (4.4)

where D ≡ ui,i is the divergence of the velocity field; ε is the turbulence dissipation
rate defined by

ε =
2

Re
µ u′

i,k u′
j,k, (4.5)

and the remaining term Φv = ΦT − ε is loosely termed viscous diffusion by analogy
to the incompressible flow case, although it also contains terms involving dilatation
and fluctuation in the turbulent viscosity coefficient.

Similarly, for turbulence heat flux u′
iT

′, we may also write

ρUk(u
′
iT

′),k = − T ′p′
,i − T ,k[ρu′

ku
′
i + Ukρ ′u′

i + ρ ′u′
ku

′
i]

− Ui,k[ρu′
kT

′+Ukρ ′T ′+ρ ′u′
kT

′]−ρu′
k(u

′
iT

′),k−Ukρ ′(u′
iT

′),k−ρ ′u′
k(u

′
iT

′),k

+
γ

PrRe
[κu′

iT
′
,kk + κ ′u′

iT ,kk + κ ′u′
iT

′
,kk] + Φp + ΦH. (4.6)

On the right-hand side of (4.6), the first term is the temperature pressure gradient
correlation; the second and the third terms are the heat flux production; the fourth
to sixth terms are the turbulence convection and the seventh term is the turbulent
heat conduction. The last two terms, Φp and ΦH are the pressure dilatation work and
viscous dissipation. The expressions for Φp and ΦH are omitted here; they are not
important in the present flow.

4.5. Turbulence intensity along the stagnation streamline

The change of the different components of turbulence intensity characterizes
the anisotropy of stagnating turbulence. The root-mean-square value of velocity
fluctuation along the stagnation streamline is shown in figure 11. The combination
of the turbulence length scale and the close location of the inflow boundary
largely eliminates the free decaying stage of the free-stream turbulence. After a
relatively balanced, isotropic development before x ∼ 2.4, the turbulence develops
strong anisotropy between x ∼ 2.4 and 2.7. Within this region, both urms and wrms

increase but vrms decreases, which is consistent with the prediction of RDT (Hunt
1973), indicating that the dominant mechanism for the turbulence anisotropy is by
vortex stretching (Lee & Reynolds 1985) in the y-direction. At closer distances x > 2.7,
the presence of the model surface generates a pronounced inviscid blocking effect.
By the non-penetration boundary condition, the normal velocity, urms , must vanish
at the wall. This causes urms to decay over a distance of the order of the turbulence
integral length scale, typically larger than the boundary-layer thickness. As a result,
the kinetic energy of urms is partially redistributed into v and w components, leading
not only to a further increase in wrms , but also to an increase in vrms that was
previously decreasing. Very near to the wall, the viscous effect dominates and all
the turbulence vanishes on the wall. The evolution of the turbulence anisotropy may
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Figure 11. Turbulence intensity along the stagnation streamline. −−−, urms; · · ·, vrms;
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Figure 12. The evolution of the Reynolds-stress invariants along the stagnation streamline.

also be characterized by the trajectory in the plane of the invariants ξ and η, here
ξ = (IIIb/2)1/3, η = (−IIb/3)1/2, and IIb and IIIb are the second and third invariants of
the Reynolds stress anisotropy tensor bij = uiuj/ukuk−δij /3 (Pope 2000). This is shown
in figure 12 by the discrete dots representing different locations along the stagnation
streamline. It can be seen that from a nearly isotropic state, the Reynolds stress
anisotropy develops as the stagnation point is approached and reaches a peak value
η =0.225 inside the boundary layer. The turning point around η = 0.1 corresponds
to the peak location of urms in figure 11, demarcating the beginning of significant
inviscid blocking effect.
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4.6. Turbulence budgets along the stagnation streamline

The budgets for the normal Reynolds stresses, u′2, v′2 and w′2, along the stagnation
streamline are shown in figure 13. In these figures, the total dissipation ΦT is used
as the dissipation term. For u′2, the production term −u′2∂U/∂x is associated with
the mean flow strain rate, representing an energy transfer from the mean flow to
u′2. Conversely, the production for v′2 is −v′2∂V/∂y, which has an opposite sign and
represents an energy transfer back to the mean flow. There is no production term
for w′2 because the mean flow is two-dimensional. The turbulence transport has the
largest magnitude in u′2, but is confined mostly to the near-wall region. It changes
sign as the wall is approached, and if integrated along the stagnation line, it results
in a vanishing net contribution to the turbulence energy. Turbulent convection is not
important for v′2 as compared to other terms. For w′2, we found that the turbulent
convection term largely cancels the mean convection term, and the sum of these two
exerts a weak dissipative effect on w′2. The total dissipation extends farthest from
the wall for u′2 and closest for v′2. It has the largest value for w′2, yet the smallest
for u′2. Except for w′2, the dissipation term does not play a significant role along the
stagnation line except extremely close to the wall for v′2.

Of particular interest for the stagnating turbulence is the redistribution term, i.e. the
correlation between velocity and pressure gradient. Along the stagnation streamline,
it is comparable in magnitude for all three normal Reynolds stresses. In strain-
dominated flows, its primary effect is the generation of turbulence anisotropy. Being
largely negative in figure 13(a) for u′2, it is positive for v′2 and w′2, as shown in
figures 13(b) and 13(c). Hence, It represents a redistribution of the energy from u′2

to v′2 and w′2. In fact, for v′2 and w′2, it is the only major energy input. For v′2,
it balances with the negative production term, whereas for w′2, the balance is with
viscous dissipation and the total convection.

It is instructive to compare the energy redistribution obtained by the present
LES and those by Reynolds averaged Navier–Stokes (RANS) simulations. In the
RANS simulations of Im et al. (2002), three Reynolds stress models (GL, GL-
CL and SSG models) along with the conventional k − ε model, are used to
compute impinging and countercurrent jets. It is shown that in the strain-dominated
flows, the overall predicative capability of the Reynolds stress models depends
crucially on the correct modelling of the pressure- strain correlation, which is part
of the redistributive velocity pressure-gradient term. Thus in § 5, we will examine the
eddy viscosity and the pressure-strain correlation from the present LES and compare
them with the corresponding Reynolds stress models.

4.7. Fluctuations in local s − n coordinates

Using the local s−n coordinates, the profiles of u′2
s , u′2

n and w′2 at s/D =0, 0.2, 0.8, 1.6
are plotted in figure 14. The local boundary-layer thickness at the corresponding
locations are also marked on the right-hand side. Note that because of the symmetry
at the stagnation streamline, the profile of u′2 is actually shown in figure 14(a) as u′2

n

(at s = 0), whereas the u′2
s at s =0 in figure 14(a) is actually v′2. This correspondence

holds only along the stagnation streamline.
Near stagnation point s = 0, the magnitude of streamwise fluctuation is small

because it corresponds to the velocity fluctuation in the axial direction of the strongly
stretched vortices. At locations s > 0, however, the streamwise vortices become
embedded in the mean boundary-layer shear flow, and are therefore capable of
generating large streamwise momentum exchange in the wall normal direction. This
is demonstrated by the increase of the magnitude of u′2

s on moving downstream. Also
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Figure 13. Turbulence budget along the stagnation streamline. (a) u′2, (b) v′2, (c) w′2,— ◦ —,
production; −−−, dissipation; · · ·, mean convection (a) and (b), mean convection + turbulent
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Figure 14. The profiles of tangential, normal and spanwise velocity fluctuation at different
streamwise locations. The corresponding laminar boundary-layer thickness δ0.99 is marked
on the right-hand side. —–, s = 0; −−−, s = 0.2D; — · —, s = 0.8D; · · ·, s = 1.6D. (s − n)

coordinates. (a) u′2
s , (b) u′2

n , (c) w′2.

notice that the peak of u′2
s measured in local boundary-layer thickness is becoming

closer to the wall downstream, showing the characteristics of a transitional boundary-
layer.

The term u′2
n shows its highest peak value at s = 0 where the vortex stretching is

strongest, and then decreases downstream. It becomes significantly smaller than the
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Figure 15. The profiles of turbulent Reynolds stress u′
su

′
n at different streamwise locations.

The corresponding laminar boundary-layer thickness δ0.99 is marked on the right-hand side.
—–, s = 0; −−−, s = 0.2D; — · —, s = 0.8D; · · ·, s = 1.6D. (s–n) coordinates.

streamwise fluctuation u′2
s at the downstream locations, indicating that the turbulence

there is mainly dominated by strong shear. Moreover, figure 14(b) also demonstrates
the wall-blocking effect extending to a distance of the order of the turbulence integral
scale, which explains the peaks of u′2

n outside the boundary layer.

For the spanwise fluctuation w′2, figure 14(c) shows that its amplitude also decays
monotonically downstream from the stagnation point. As mentioned before, the strong
mean flow-straining and wall-blocking effects decrease on moving downstream, and
the flow gradually changes to a shear-dominated type. In such cases, the redistribution
term plays a much smaller role in transferring the turbulence kinetic energy from
u′2 to w′2, yet there is no production term for w′2. The combination of these factors
determines the trend of the decreasing w′2 in the streamwise direction. Another feature
of the w′2 profile is that besides the main peak inside the boundary layer, a second peak
develops outside the boundary layer in the leading-edge region (s/D < 0.8). We believe
that this is yet another indication of the turbulence anisotropy resulting from the
existence of the strong streamwise vortices. Far from the leading edge, the free-stream
turbulence is isotropic, and the turbulence vortices are orientated randomly with
no preferred direction. As it approaches the stagnation point, turbulence anisotropy
develops because of the strong streamwise vortices emerging from the background
turbulence. If these vortices were perfectly stationary then they would appear in
the mean flow, but they are induced by free-stream turbulence and thus form and
decay and move about as well. One of the characteristics of the streamwise vortices
is that the spanwise velocity w changes sign across the vortex section, and thus its
room-mean-square value has a two-peak structure with the lowest point in between
corresponding to the vortex centre. The two peaks are not of equal strength, since
the magnitude of w′ is increasing. When these streamwise vortices become strong and
frequent enough, this particular pattern, super-imposed on the background turbulence
field, gives rise to the second peak in the overall w′

rms .
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Figure 16. The profiles of tangential heat flux u′
sT

′ at different streamwise locations. The
corresponding laminar boundary-layer thickness δ0.99 is marked on the right-hand side. —–,
s = 0; −−−, s = 0.2D; — · —, s = 0.8D; · · ·, s = 1.6D. (s–n) coordinates.

The only significant shear stress in the present flow is u′v′ and it vanishes on
the stagnation streamline due to the symmetry in velocity u and v. In figure 15,
the profiles of u′

su
′
n are plotted in local s − n coordinates. There are two distinct

peaks for each curve, one being negative outside the boundary layer, and the other
positive inside the boundary layer. Moving downstream from the stagnation point,
we find the amplitude of the outer peak decreases whereas the amplitude of the inner
peak increases. The inner positive peak of u′

su
′
n represents a counter-gradient hence

non-local transport of momentum, and this is believed to be a result of the vortex
rebounding at the wall. Essentially, mean convection brings the stretched turbulence
eddies from the free stream into the laminar boundary layer and aligns the vortices
in the streamwise direction. As these streamwise vortices approach the wall, the
no-slip wall boundary condition enforces two thin regions of large vorticity (with
opposite sign to the approaching vortices) to be generated between the wall and
the approaching vortices. When the streamwise vortices are strong enough, the thin
underneath region can be lifted up and it forms a dipole vortex with the primary
vortex. This newly formed dipole vortex induces a positive normal velocity and the
vortex bounces back from the wall. The mechanism of rebounding vortex has been
previously studied in detail using a pair of counter-rotating vortices, or a dipole
vortex, colliding with a wall under self-induced velocity (Orlandi 1990; Carnevale,
Velasco Fuentes & Orlandi 1997). Here in the leading-edge region, the vortices are
convected by the mean flow (thus a vortex pair is not required), but the vortex–wall
interaction is similar. In terms of fluctuation velocity, when turbulence is brought into
the boundary layer from the free stream, it creates a region of u′

s > 0, u′
n < 0 within the

boundary layer which is responsible for the overall negative u′
su

′
n. However, because

of the vortex rebounding, the normal velocity u′
n changes sign in the near-wall region

and consequently generates the positive value of u′
su

′
n.

4.8. Thermal fluxes u′
sT

′ and u′
nT

′

The profiles of the thermal fluxes u′
sT

′ and u′
nT

′ are shown in figures 16 and 17 at
different streamwise locations. While the tangential flux u′

sT
′ increases on moving
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Figure 17. The profiles of wall normal heat flux u′
nT

′ at different streamwise locations. The
corresponding laminar boundary-layer thickness δ0.99 is marked on the right-hand side. —–,
s = 0; −−−; s = 0.2D; — · —, s = 0.8D; · · ·, s = 1.6D. (s–n) coordinates.

downstream, the peak value of the positive normal flux u′
nT

′ decreases. Near the
stagnation point, the u′

nT
′ is predominantly positive owing to the same free-stream

turbulence impingement that gives rise to the negative shear stress u′
su

′
n. Different

from that of the u′
su

′
n, however, is the peak location of the u′

nT
′. Comparing figures 17

and 15, one can see the positive peak of u′
nT

′ is almost five times closer to the
wall than the negative peak of u′

su
′
n. We believe this difference in the peak locations

between the thermal flux and the shear stress explains the greater sensitivity to the
free-stream turbulence for the heat transfer rate than the wall friction coefficient, as
observed in figure 4. Close to the wall at downstream locations, u′

nT
′ changes sign,

indicating the similar counter-gradient feature in the thermal fluxes. The mechanism
can be understood in a similar way through the vortex rebound as for u′

su
′
n discussed

in § 4.7. The profiles of the production terms for u′T ′ and v′T ′ are shown in figures 18
and 19. Along the streamwise direction, the u′T ′ increases but v′T ′ decreases. The
decaying of the production in v′T ′ may be attributed to the difference in the peak
locations of the fluctuation velocity v′ and temperature T ′. The former shifts away
from the wall downstream whereas the latter remains close to the wall in the entire
streamwise range.

5. Eddy viscosity and pressure–strain correlation
As mentioned in § 1, modelling turbulence effects in strain dominated flows remains

a challenge. One of the primary goals of the present LES study is to provide
useful information for this effort. Conventional two-equation models do not address
the anisotropy of stagnating turbulence, and the use of the linear constitutive model,
u′

iu
′
j = − 2νT Sij +2/3kδij , results in severe overprediction of the turbulence production.

In order to recover the correct turbulence production, one remedy (Durbin 1996) based
on the realizability consideration introduces an upper bound on the eddy viscosity,
νT � k/

√
6|S|, where |S| is the magnitude of the strain rate. In practice, the constraint

can also be expressed in terms of turbulence time scale T by using formula νT = CµkT .

For example, T = min{k/ε, α/
√

6Cµ|S|}, where α = 0.6, has been incorporated into
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Figure 19. Profiles of turbulence production for v′T ′ along wall normal direction. —–, s =0;
−−−, s = 0.2D; — · —, s = 0.8D; · · ·, s = 1.6D.

the standard k − ε model to compute turbine blade heat transfer (Medic & Durbin
2002). For the realizability condition, figure 20 shows the normalized turbulence
eddy viscosity νT (not the SGS eddy viscosity) and the corresponding νT R = k/

√
6|S|

along the stagnation line based on the present LES results. The effective νT is
obtained through P = 2νT SijSij with the turbulence production P and strain rate Sij

computed from the LES results. As a comparison, the eddy viscosity obtained using
the conventional k − ε model νT k =Cµk2/ε, Cµ = 0.09 is also plotted. Away from the
stagnation point, the value of νT k is about five times that of νT . Close to the stagnation
point, νT k decreases and approaches a constant value of about twice νT . Because of
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Figure 20. Turbulence eddy viscosity νT (not the SGS νT ). —–, LES results; — · —, k − ε
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this elevated eddy vicosity, the k − ε model overpredicts the turbulence production
in stagnation-point flows. On the other hand, the eddy viscosity νT R tracks the νT

quite well and provides a useful upper bound for νT , indicating the effectiveness of
the realizability constraints.

In second-order Reynolds stress models, the pressure–strain correlation

φij =
p′

ρ

(
∂ui

∂xj

+
∂uj

∂xi

)
, (5.1)

is the primary means of redistributing the kinetic energy among different components
of the Reynolds stresses. The current LES results can be used to examine the particular
pressure–strain correlations in different Reynolds stress models. Here three of such
turbulence models are chosen that were used in Im et al. (2002): the GL (with wall
reflection terms); GL-CL; and SSG models. Figure 21 shows the comparison of
the φαα along the stagnation streamline between the LES results and the turbulence
models (see Appendix B for the expressions of φαα in these models). First, notice
that in the region close to the stagnation point, the GL model predicts all three
components of φαα with the wrong sign. Between the GL-CL and the SSG models,
the GL-CL is significantly better at predicting φ11 and φ33; not only is the sign more
consistent, the magnitudes are also comparable to the LES results. The LES data
show the φ22 is smaller than the other two components, this is, however, not apparent
in the model predictions. Both GL-CL and SSG models severely overpredict φ22 with
the GL-CL model having the largest error, albeit a more consistent sign. Another
feature of the GL-CL model is that the peaks of the φαα are located at a larger
distance from the wall than the LES results. These findings are consistent with the
observations made by Im et al. (2002) from the RANS calculations and suggest that
the GL-CL model is overall the most effective of the three turbulence models for
stagnation-point or strain-dominated flows.

6. Concluding remarks
In this paper, the stagnation-point flow and heat transfer at an elliptical isothermal

leading edge in the presence of free-stream turbulence is investigated using LES.
Along the stagnation streamline, the turbulence intensity in the streamwise (x) and
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Figure 21. The pressure–strain correlation φαα = (p′/ρ)(∂uα/∂xα) (no summation over α)
along the stagnation streamline, comparison between the LES results and different Reynolds
stress models. — ◦ —, LES; · · ·, GL model; — · —, GL-CL model; −−, SSG model.

spanwise (z) directions increases, whereas the intensity in the transverse (y) direction
decreases. Very close to the wall, the streamwise fluctuation is reduced by the wall
blockage effect, and its energy is transferred to the other two components. As a
result, the spanwise turbulence intensity becomes the most dominant of the three
components in this region. The most important Reynolds stress budget terms for
the stagnating turbulence are the production and the velocity pressure gradient
correlation. In particular, the latter dominates the development of the transverse
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and spanwise normal Reynolds stresses, and hence the turbulence anisotropy. The
boundary layer under free-stream turbulence is found to be in non-equilibrium and
pre-transitional. The normal turbulence heat flux is shown to have a peak location
much closer to the wall than that for the Reynolds shear stress, explaining the greater
sensitivity to free-stream turbulence for the heat transfer than the momentum transfer
in stagnation-point flows.

Intense, streamwise vortical structures generated at the leading edge owing to strong
vortex stretching are found to be the direct cause of the heat transfer enhancement.
These vortices have a spanwise dimension about 2–3 times the local boundary-layer
thickness and they move laterally at a speed comparable to the local spanwise
fluctuation velocity. The enhancement of the heat transfer obtained by the present
LES agrees well with the corresponding experimental measurements.

The LES results are used to examine the eddy viscosity obtained from the
conventional k − ε model and from realizability conditions. The k − ε model is found
to produce excessive turbulent eddy viscosity in stagnation-point flows, but the
realizability condition provides an adequate upper bound for the eddy viscosity.
Furthermore, the pressure–strain correlations obtained by the present LES are
compared with those from three Reynolds stress models (GL, GL-CL and SSG).
Of the three models, it is found that the GL-CL model provides the most effective
pressure–strain correlations in stagnation-point or strain-dominated flows. It is hoped
that the LES data will be useful in developing improved models of pressure–strain
correlations for strain-dominated flows.
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resource was provided by DoD Major Shared Resource Center at US Army Engineer
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the referees’ comments on the original manuscript, particularly those concerning the
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Appendix A. Validation
Laminar compressible boundary-layer profiles at the leading edge allow self-similar

analytic solutions when viscosity varies as a linear function of temperature (Reshotko
& Beckwith 1957). Figures 22 and 23 show the velocity and enthalpy profiles for Pr =1
for flow over an elliptical leading edge. The wall temperature is set to be twice the
total temperature of the incoming flow, i.e. Tw/T0 = 2. For different Mach numbers,
Ma = 0.1 and Ma = 0.8 (not shown here), excellent agreement in the velocity and
enthalpy profiles is obtained between the numerical and analytical solution. Further
comparisons at different flow conditions can be found in Xiong (2004). To validate the
code in unsteady computations, we choose to compute the boundary-layer receptivity
to ambient sound at a blunt leading edge. Receptivity is defined as a process by which
external flow disturbances are converted into instability waves (Morkovin 1969). For
the flat-plate boundary-layer flow, the sound receptivity refers to the generation of
Tollmien–Schlichting (T-S) instability waves inside the boundary layer by free-stream
acoustic waves. We use the same flow configuration as in Lin (1992) and Collis (1997)
for a compressible boundary layer on a flat plate with a super ellipse leading edge.
However, unlike the usual numerical receptivity studies, which are based on linearized
governing equations about a base flow, we use the full nonlinear N-S equations to
compute both the base and the disturbed flows. The evolution of the disturbance
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Figure 22. Comparison of boundary-layer velocity profile at the leading edge. Re = 105,
M = 0.15, Tw/T0 = 2.0, Pr =1.0. —–, computation; −−−, similarity solution.
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Figure 23. As figure 22, but for enthalpy profile.

is obtained by subtracting the base solution from the instantaneous solution. In the
present computation, the mean flow is judged to be steady after the residue has
dropped by 8 orders of magnitude from its initial value. The mean flow wall vorticity
ωw is shown in figure 24 and it is in very good agreement with those from Collis
(1997). In figure 25, the streamwise velocity profile at x =2.783 is shown as a function
of the Blasius variable ηb, defined as ηb = y

√
Re/(x + 1). Again, the present result

agrees well with Collis (1997).
Once the base flow is obtained, acoustic waves are introduced through the inflow

sponge at a frequency ω = 3.312 and amplitude A= 0.001 (see Xiong 2004 for details).
With the mean flow Mach number M = 0.1, the downstream acoustic wavelength is
λa = 20.833.

The T-S wave field inside the boundary layer induced by the sound wave is plotted
in figure 26 using the vertical velocity component. Notice that the overall disturbance
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Figure 24. Comparison of the wall vorticity ωw . —–, present computation;
−−−, Collis (1997).
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Figure 25. Streamwise velocity profile at x = 2.783. —–, present computation;
−−−, Collis (1997).

flow field in the boundary layer contains not only the excited T-S wave, but also the
incoming and scattered acoustic waves.

After subtracting the acoustic components from the total disturbance solution
following Wlezien (1994), the amplitude of the T-S wave is shown in figure 27. The
results from Lin (1992) (for incompressible flow) and from Collis (1997) are also
shown. Again, we can see that the computations have followed similar shapes, with
some small quantitative differences. Given the great sensitivity of the growth rate of
the T-S wave, the difference is considered to be acceptable, and the overall agreement
is satisfactory.
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Figure 27. Local maximum of the amplitude of the T-S wave based on the vertical
disturbance velocity. —–, present computation; −−−, Collis (1997); — · — Lin (1992).

Appendix B. Pressure–strain correlation
Let φαα denote the pressure strain correlation (no summation over α) in the

equations for u2, v2 and w2,

φαα =
p′

ρ

∂uα

∂xα

, (B 1)

and k and ε denote the turbulence kinetic energy and dissipation. Along the stagnation
streamline, the φαα in the GL, GL-CL and SSG Reynolds stress models takes the
following form:

GL model

φ11 = −ε

k

[
α1

(
u2 − 2

3
k
)
+2α1wu2fn

]
− α2

3
[(2P11 − P22) − 2β2w(2P11 − P22)fn], (B 2)

φ22 = −ε

k

[
α1

(
v2 − 2

3
k
)

− α1wu2fn

]
− α2

3
[(2P22 − P11) + β2w(2P11 − P22)fn], (B 3)

φ33 = −ε

k

[
α1

(
w2 − 2

3
k
)

− α1wu2fn

]
+

α2

3
[(P11 + P22) − β2w(2P11 − P22)fn]. (B 4)
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GL-CL model

φ11 = −ε

k

[
α1

(
u2 − 2

3
k
)

+ 2α1wu2fn

]
− α2(2P11 − P22)

3

− fn

[
2(γ2w + γ ′

2w)P11 + 2γ2wP22 +
2k(2γ ′

2w − γ
′′

2w)

3
S11

]
, (B 5)

φ22 = −ε

k

[
α1

(
v2 − 2

3
k
)

− α1wu2fn

]
− α2(2P22 − P11)

3

+ fn

[
(γ2w + γ ′

2w)P11 + γ2wP22 +
k(2γ ′

2w − γ
′′

2w)

3
S11

]
, (B 6)

φ33 = −ε

k

[
α1

(
w2 − 2

3
k
)

− α1wu2fn

]
+

α2(P11 + P22)

3

+ fn

[
(γ2w + γ ′

2w)P11 + γ2wP22 +
k(2γ ′

2w − γ
′′

2w)

3
S11

]
. (B 7)

where

P11 = −u2
∂U

∂x
, P22 = −v2

∂V

∂y
, S11 =

∂U

∂x
, S22 =

∂V

∂y
, fn =

k3/2

αn ε xn

. (B 8)

The coefficients are α1 = 1.8, α2 = 0.6, α1w = 0.5, β2w = 0.3, γ2w = 0.08, γ ′
2w =

0.1, γ
′′

2w = 0.4, αn = 2.5. The xn is the normal distance to the wall.
SSG model

φ11 = − (σ1ε + σ ∗
1 P )b11 + σ2ε

(
b2

11 − 1
3
Πb

)
+

(
σ3 − σ ∗

3 Π
1/2
b

)
kS11

+ 2
3
σ4k(2b11S11 − b22S22), (B 9)

φ22 = − (σ1ε + σ ∗
1 P )b22 + σ2ε

(
b2

22 − 1
3
Πb

)
+

(
σ3 − σ ∗

3 Π
1/2
b

)
kS22

+ 2
3
σ4k(2b22S22 − b11S11), (B 10)

φ33 = − (σ1ε + σ ∗
1 P )b33 + σ2ε

(
b2

33 − 1
3
Πb

)
− 2

3
σ4k(b11S11 + b22S22), (B 11)

where

P = P11 + P22, bii =
uiui

2k
− 1

3
, Πb = b2

ii . (B 12)

The coefficients are σ1 = 3.4, σ ∗
1 = 1.8, σ2 = 4.2, σ3 = 0.8, σ ∗

3 = 1.3, σ4 = 1.25.
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